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Abstract - We present a breakthrough algorithm for 
efficient estimation of objective function sensitivities for time- 
domain TLM with nondispersive boundaries. The original 
electromagnetic structure is simulated using TLM. Au 
adjoint TLM simulation that runs backward in time is 
derived and solved. The sensitivities of the objective function 
with respect to all the designable parameters are estimated 
using only the original and adjoint simulations. Our 
approach is illustrated through estimating the sensitivities of 
au objective function with respect to the dimensions of a 
waveguide discontinuity. 

I. INTRODUcnON 

The traditional design problem of a microwave shucture 
can be formulated as 

where x is the vector of designable parameters and R(x) is 
the vector of responses obtained by electromagnetic 
simulation. F is the objective function to be minimized 
and x* is the vector of optimal designable parameters. 

Classical optimization approaches for solving (1) with a 
finely discretized electromagnetic simulator (“fine” model) 
can be prohibitive. This motivates research for more 
efficient optimization approaches. Space Mapping [I], for 
example, exploits the existence of another fast but less 
accurate “coarse” model of the circuit under consideration. 
In [2] an analytical expression is derived for the 
admittance matrix of a finite element analysis of a 
microstrip circuit. Another approach [3] derives the 
current derivatives integral equation. The derivatives are 
then expanded in terms of the same basis functions used in 
the analysis. The same LU decomposed analysis matrix is 
reused to solve for the derivatives coefficients. 

Another alternative is to utilize adjoint variable methods 
[4]. Using only two analyses of the original and adjoint 
circuits, the sensitivities with respect to all the designable 
parameters can be obtained. This method was mainly 
developed for network and control theories. Recent 

research attempts to apply this approach to the Method of 
Moments (MOM) [5], Frequency Domain Transmission 
Line Modeling (FDTLM) [6] and the FDTD method with 
unstructured grids [7]. 

Several approaches are suggested for efficient 
optimization using time-domain TLM. For example, the 
algorithm suggested in [81 exploits the time reversal 
property of the TLM method [9]. The impulses 
corresponding to a desired response are obtained through 
inverse Fourier transform. These impulses are then 
propagated back in time to determine the geometly of the 
designable discontinuity. This inversion process, however, 
may not produce a unique result. A more recent approach 
[lo] is developed for the synthesis of a microwave 
structure. The designable parameters are associated with a 
set of characteristic frequencies. The design specifications 
determine the desired values of these frequencies. A 
synthesis phase is then carried out for each parameter. In 
this phase, the corresponding optimizable boundary parts 
are replaced by matched sinusoidal sowxs. The new 
geometry is determined by observing the envelope of the 
electric/magnetic field inside the structure. 

In this paper, we present a novel Adjoint Variable 
Method (AVM) approach to design sensitivity analysis 
with time-domain TLM. An adjoint structure is derived 
from the original structure. Both the original and adjoint 
structures are simulated. The incident and adjoint 
impulses are stored during these simulations only at few 
mesh links related to each designable parameter. Using 
only two simulations, of the original and the adjoint 
structures, the sensitivities of the objective function with 
respect to all designable parameters can be obtained. 

II. THE TLM METHOD 

The TLM method carries out a sequence of scattering 
and connection steps [9]. For the jth non-metalized node 
the scattering relation is given by 

V$” = S’V J k (2) 
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where v; is the vector of incident impulses on the jth 
node at the kth time step, v$’ is the vector of reflected 
impulses of the jth node at the same time step, and s’ is 
the scattering matrix of the jth node. The reflected 
impulses from each node become incident on neighboring 
nodes at the next time step. It follows that one TLM step 
is given by 

V k+, = c SVk +v; (3) 

where V, is the vector of incident impulses for all nodes 
v,+y )/;’ v;“‘] and the superscript T denotes 
the transpose. Here, we assume that the computational 
domain is discretized into a total of N non-metalized nodes 
with node size A1. The matrix S is a block diagonal matrix 
whose jth diagonal block is S’. C is the connection 
matrix describing how reflected impulses connect to 
neighboring nodes/boundaries. The vector V; is the 
vector of source excitation at the kth time step. 

III. OUR AVM APPROACH 

The goal is to efficiently estimate the gradient of the 
objective function with respect to the designable 
parameters x at a given set of values x0. The objective 
function that we consider is of the form [7] 

F=r~jG(x,V)dRdt (4) 
on 

where R is the observation domain, V is the corresponding 
continuous vector of V,, and T, is the maximum 
simulation time. The analytic derivative of this objective 
function with respect to the ith parameter is given by 

where - denotes the explicit dependence. 
ax, 

For a band-limited excitation and for suffXently small 
time step At, equation (3) can be expressed as 

Simplifying (6) we get 

where A(x) =&(C(x)S(x)-I) and Z is the identity 

matrix. Notice that in (7) we omitted the subscript k to 
denote an arbitrary time not only multiples of Af. 

We limit ourselves to the case where perturbing one of 
the parameters x, by Ax, results in metalizing some of the 
nodes. Here, Ax, is selected as the smallest on-grid 
perturbatiori of the ith parameter. This causes a 
perturbation AA, of the matrix A. From (7) we obtain 

a? -=*v +A$$+AA,$- 
atax, ax, , (8) , 

The second order term in (8) should not be neglected. 
This is because the perturbation in the connection and 
scattering matrices is of the same order of magnitude as 
their values. Notice also in (8) that the excitation is 
aswined independent of the designable parameters. 

Following a similar approach to [7], we define the 
adjoint variable 1 through the equation 

Integrating (9) by parts we get 

The adjoint variable 1 is selected to have a terminal 

value of n(T, ) = 0 Also, the vector V has an initial zero 

value regardless of the value of the parameter x,, i=l, 2, 
. . . . n. It follows that the first term in (10) vanishes. 
Equation (10) cam thus be written as 

Comparing the second term in (5) with the left hand side 
of (ll), we choose 

dT 
~ +j(A+AA,)= 
dt 

Using the definition of the matrix A, we write (12) in 
discrete time as 

A&, = S”C”I, -lp, ACT”,) = 0 (13) 

where s” = S’(X+A~~~,) is the scattering matrix of the 

adjoint system, C” = C’(x + A& e,) is the connection 

is the 

adjoint excitation. 
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Equation (13) represents a TLM simulation that is 
running backward in time with known excitation. This 
simulation provides the value of the adjoint variable 1 at 
all time steps. Using (5), (11) and (I2), the sensitivity of F 

with respect to the ith parameter is given by 

The matrix AA, in (14) contains only few nonzero 
elements. So we need only store the impulses for the 
original and adjoint problems for small number of mesh 
links at all time steps. 

The main diff%ulty in applying (14) is that the adjoint 
problem in (13) is solved for the perturbed problem, which 
is parameter-dependent. To overcome this, we assume 
that the perturbation done in each parameter is small and 
does not affect in a significant way the distribution of the 
incident impulses. The adjoint impulses required in (14) 
are approximated by the values of the corresponding 
incident impulses for the unperturbed adjoint problem: 

,I., = sT(x)cr(x)rl~-v:~~. 4TA =o (15) 

Our experience shows that this approximation 
introduceS very little error if Ax, is sufficiently small. 
This approximation is illustrated for 2D TLM in Fig. I. 

Our AVM algorithm can thus be summarized in the 
following steps. 

P&&eterization: determine the sets of link indices 
L, whose connection and scattering matrices are 
affected by the perturbations Ax,,, i=l, 2 ,..., n. 
Original Analysis: carry out the original TLM 
analysis (3) and store the set of impulses for all 
indices in the set L,, i=l, 2 ,.__, n. The values of the 
incident impulses in the observation domain are 
also stored to determine the ridjoint excitation. 
Adjoint Analysis: carry out the backward adjoint 
analysis (15) with the adjoint excitation determined 
in step 2. Store the impulses of the links with 
indices L,, i=l, 2 ,.._, n. 
Sensitivities Esfimation: evaluate (14) for all 
parameters. 

IV. EXAMPLES 

We illustrate our AVM technique through estimating the 
sensitivities for an inductive obstacle in the parallel plate 
waveguide shown in Fig. 2. The width of the waveguide is 
a = 6.0 cm. The length of the waveguide is d = 6.2 cm. A 
square cell of dimension AI = 0.002 m is utilized. This 

(cl 
Fig. 1. Illustration of the links storage: a) the arrowed links 
are the ones for which the matrix AA has nonzero components 
for a perturbation of 1 Ax of the parameter L, b) the arrowed links 
are the ones that should be stored during the adjoint analysis of 
the perturbed circuit and c) the links in (b) are approximated by 
their corresponding ones for the unperturbed circuit. 

problem is simulated as a 2D problem with a Gaussiar- 
modulated sinusoidal excitation of frequencyf= 2.0 GHz. 
Symmetry is employed to simulate only half of the 
structure. The objective function is taken as 

(16) 

where 0 is the cross section of the waveguide at the last 
column of nodes and e, is the y component of the electric 
field which is a function of the incident impulses. The 
objective function (16) is approximated by 

where N, is the number of cells in the x direction and N, is 
the number of time steps. 

The gradient of this .objective function is estimated 
using our AVM approach for different sets of parameters’ 
values. The comparison between the AVM results and the 
central difference derivatives is shown in Fig. .3. We see 
that the error introduced by utilizing the approximation 
(15) is acceptable for optimization purposes. 
Incorporating a fmer grid (AI = 1.0 mm) results in a 
reduced error in the AVM gradients as shown in Fig. 4 
because the approximation (15) becomes more valid for a 
finer grid. 
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Fig. 2. The inductive obstacle example. 
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Fig. 3. Objective sensitivities for the inductive obstacle 
example at D = 3A1 with AI = 2.0 mm for different values of W; 
#I& obtained using AVM (-), @I& obtained using 
central differences (0). aFi& obtained using AVM (--) and 
aNoD obtained using central differences (*). 
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Fig. 4. Objective sensitivities for the inductive obstacle 
example at D = 6111 with AI = 1.0 mm for different values of W; 
aF/dV obtained using AVM (-), aFi& obtained using 
central differences (o), aFI& obtained using AVM (--I and 
?JF/& obtained using central differences (*). 

V. CONCLUSIONS 

For the first time, an adjoint variable approach is 
presented for efficient sens~tw~txs estimation in the TLM 
method. An adjoint TLM simulation that runs backward 
in time is set up using the original structure. Using only 
these two simulations, the derivatives of the objective 
function with respect to all designable parameters are 
estimated. The proposed technique features simplicity and 
excellent accuracy. Its implementation with existing TLM 
algorithms is straight-forward. Our approach is illustrated 
through a waveguide discontinuity example. 

111 

PI 

[31 

L41 

[Sl 

161 

171 

1x1 

191 

REFERENCES 

k.H. B&r, J.W. Bandler, K. Madsen, J.E. Rayas-Sticher 
and J. Sfindergaard, “Space mapping optimization of 
microwave circuits exploiting surrogate models,” IEEE 
MTI-S In:. Muowme Symp. Dig. (Boston, MA), pp. 1785. 
1788,hle 2000. 
P. Garcia and I.P. Webb, “Optimization of planar devices 
by the finite element method,” IEEE Trans. Microwave 
Theory Tech., vol. 38, pp. 48-53, Jan. 1990. 
J. Ureel and D. De Zutter, “A new method for obtaining the 
shape sensitivities of planar microstrip wuctures by a full- 
wave analysis,” IEEE Trans. Micr-owave Themy Tech., vol. 
44, pp. 249-260, Feb. 1906. 0 
1.W. Bundler and S.H. Chen, “Circuit optimization: the 
state of the at,” IEEE Trans. M~crmvave Themy Tech., vol. 
36, pp. 1661.1669, Dec. 1988. 
N.K. Georgieva, S. Glavic, M.H. Bakr and J.W. Bandler, 
“Feasible adjoint sensitivity technique for EM design 
optimization,” IEEE Tmns. Microwave Theory Tech. (in 
print, Dec. 2002). 
MM. B&a and N.K. Georgieva, “An adjoin, variable 
method for frequency domain TLM problems with 
conducting boundaries,” IEEE Micr-owme and Wireless 
Componenr,s Lerterx, to be published, 
Y.S. Chung, C. Cheon, 1.H. Park and S.Y. Hahn, “Optimal 
design method for microwave device usmg time domain 
method and design sensitivity analysis-part II: FDTD case,” 
IEEE Tram Magnetics., vol. 37, pp. 3255.3259, Sep. 
2001. 
M. Forest and W.J.R. Hoefer, “A novel synthesis technique 
for conducting scatterers using TLM time reversal,” IEEE 
Tmns. Micr-rxwve Themy Tech., vol. 43, pp. 1371.1378, 
June 1995. . 
W.J.R. Hoefer, “The transmission-line matrix method- 
theory and ap.plications,” IEEE Trims. M~mavuve Themy 
Tech., vol. Ml-P33, pp. X82-893, Oct. 1985. 

1101 M.H. Bakr. P.P.M. So and W.J.R. Hoefer, “The aeneration 
of optimal microwave topologies using time-do&in field 
synthesis,” IEEE Trans. Microwave Thruy Tech., vol. 50, 
pp. 2537-2544, Nov. 2002. 

1124 


	MTT025
	Return to Contents


