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Abstract — We present a breakthrough algorithm for
efficient estimation of objective function sensitivities for time-
domain TLM with nondispersive boundaries. The original
electromagnetic structure is simulated using TLM. An
adjoint TLM simulation that runs backward in time is
derived and solved. The sensitivities of the objective function
with respect to all the designable parameters are estimated
using only the original and adjoint simulations. OQur
approach is illustrated through estimating the sensitivities of
an objective function with respect to the dimensions of a
waveguide discontinuity.

1. INTRODUCTION

The traditional design problem of a microwave structure
can be formulated as

£ =arg{min F(x, R(x))} (1)

X

where x is the vector of designable parameters and R(x) is
the vector of responses obtained by -electromagnetic
simulation. F is the objective function to be minimized
and x is the vector of optimal designable parameters.

Classical optimization approaches for solving (1) with a
finely discretized electromagnetic simulator (“fine” model}
can be prohibitive. This motivates research for more
efficient optimization approaches. Space Mapping [1], for
example, exploits the existence of another fast but less
accurate “coarse” model of the circuit under consideration.
In [2] an analytical expression is derived for the
admittance matrix of a finite element analysis of a
microstrip circuit.  Another approach [3] derives the
current derivatives integral equation. The derivatives are
then expanded in terms of the same basis functions used in
the analysis. The same LU decomposed analysis matrix is
reused to selve for the derivatives coefficients.

Another alternative is to utilize adjoint variable methods
[4]. Using only two analyses of the original and adjoint
circuits, the sensitivities with respect to all the designable
parameters can be obtained. This method was mainly
developed for network and control theories. Recent

research attempts to apply this approach to the Method of
Moments (MoM) [51, Frequency Domain Transmission
Line Modeling (FDTLM) [6] and the FDDTD method with
unstructured grids [7].

Several approaches are suggested for efficient
optimization using time-domain TLM. For example, the
algorithm suggested in [8] exploits the time reversal
property of the TLM method [9]. The impulses
corresponding to a desired response are obtained through
inverse Fourier transform. ‘These impulses are then
propagated back in time to determine the geometry of the
designable discontinuity, This inversion process, however,
may not produce a unique result. A more recent approach
[10] is developed for the synthesis of a microwave
structure. The designable parameters are associated with a
set of characteristic frequencies. The design specifications
determine the desired values of these frequencies. A
synthesis phase is then carried out for each parameter. In
this phase, the corresponding optimizable boundary parts
are replaced by matched sinuscidal sources. The new
geometry is determined by observing the envelope of the
electric/magnetic field inside the structure.

In this paper, we present a novel Adjoint Variable
Method (AVM) approach to design sensitivity analysis
with time-domain TLM. An adjoint structure is derived
from the original structure. Both the original and adjoint
structures are simulated. The incident and adjoint
impuises are stored during these simulations only at few
mesh links related to each designable parameter. Using
only two simulations, of the original and the adjoint
structures, the sensitivities of the objective function with
respect to all designable parameters can be obtained.

II. THE TLM METHOD

The TLM method carries out a sequence of scattering
and connection steps [9], For the jth non-metalized node
the scattering relation is given by

v =8'v/ )
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where v/ is the vector of incident impulses on the jth
node at the kth time step, V' is the vector of reflected
impulses of the jth node at the same time step, and §/ is
the scattering matrix of the jth node. The reflected
impulses from each node become incident on neighboring
nodes at the next time step. It follows that one TLM step
is given by

Vi =C SV 4V, 3

where Vv, is thc vector of incident impulses for all nodes
V.=l v oLyl 7| and the superscript T denotes
the transpose, Here, we assume that the computational
domain is discretized into a total of N non-metalized nodes
with node size A/, The matrix S is a block diagonal matrix
whose jth diagonal block is §/. € is the connection
matrix describing how reflected impulses connect to
neighboring nodes/boundaries. The vector V, is the
vector of source excitation at the kth time step.

IH. Our AVM APPROACH

The goal is to efficiently estimate the gradient of the
objective function with respect to the designable
parameters x at a given set of values x°. The objective
function that we consider is of the form [7]

T,
F=[[GxV)dQdr )
[t+]

where Q is the observation domain, V is the corresponding
continuous vector of V,, and 7T, is the maximum
simulation time. The analytic derivative of this objective
function with respect to the ith parameter is given by .

FLT aGde jj( )a—Vdet )

Q. axJ

a X

[4
where 97 denotes the explicit dependence.

X;

For a band-limited excitation and for sufficiently small
time step Az, equation (3) can be expressed as

oV :
at ),
Simplifying (6) we get
A v
Y AV ™
at ) Ar

where A(x)=-;—(C(x)S(x)—I) and I is the identity

matrix. Notice that in (7) we omitted the subscript & to
denote an arbitrary time not only multiples of Ar.

We limit ourselves to the case where perturbing one of
the parameters x; by Ax; results in metalizing some of the
nodes. Here, Ax; is selected as the smallest on-grid
perturbation of the ith parameter.  This causes a
perturbation AA; of the matrix A. From (7) we obtain

JV__0A L4 oy

b AA -
wn ax’ T ax ®

The second order term in (8) should not be neglected.
This is because the perturbation in the connection and
scattering matrices is of the same order of magnitude as
their values. Notice also in (8) that the excitation is
assumed independent of the designable parameters.

Following a similar approach to [7], we define the
adjoint variable 4 through the equation

Tm o[V 0A v A
T ~—V —A—-AA,— |dt=0 (9
! (atax, ax’  om Maa ®
Integrating (9) by parts we get
T Ty T
f%i - j(ﬁ +,1T(A+AA,-)]%K—(1':
xi|, o\ dt ; Xi (10)
| fa—AV dt
0 aJCi

The adjoint variable 1 is selected to have a terminal
value of A{7,,)=0. Also, the vector V¥ has an initial zero

value regardless of the value of the parameter x;, i=1, 2,

-v., 0. It follows that the first term in (10) vanishes.
Equation (10) can thus be written as

T T T
| a4 + 1 (A+AA) a—v—dr=—jf—a-fi—v dr (11)
ol dt dx o Ox

Comparing the second term in (5) with the left hand side
of (1L1), we choose

A aay E)T .
z“ (A+AA) (av (12)

Using the definition of the matrix A, we write (12} in
discrete time as

A =87C A, -V, T =0 (13)

where §*=S"(x+Axe;) is the scattering matrix of the

adjeint system, C*=C7(x+Axe,) is the connection

matrix of the adjoint system and V= G i the
aV r=kis
adjoint excitation.
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Equation (13) represents a TLM simulation that is
running backward in time with known excitation. This
simulation provides the value of the adjoint variable 4 at
all time steps. Using (5), (11) and (12), the sensitivity of
with respect to the ith parameter is given by

e Tm e
OF _¥F fa A = OE

= A
dxi dxi o Ox dxi fZ)_ —_LV (14)

The matrix AA4;in (14) contains only few nonzero
elements. So we need only store the impulses for the
original and adjoint problems for small number of mesh
links at all time steps,

The main difficulty in applying (14) is that the adjoint
problem in (13) is solved for the perturbed problem, which
is parameter-dependent. To overcome this, we assume
that the perturbation done in each parameter is small and
does not affect in a significant way the distribution of the
incident impulses. The adjoint impulses required in (14)
are approximated by the values of the comesponding
incident impulses for the unperturbed adjoint problem:

Aa=STRCT (04, -Vt, AT =0 (15)

Our experience shows that this approximation
introduced very little error if Ax;is sufficiently small.
This approximation is illustrated for 2D TLM in Fig, 1.

Our AVM algorithm can thus be summarized in the
following steps.

1. Parameterization: determine the sets of link indices
L; whose connection and scattering matrices are
affected by the perturbations Ax;, i=1, 2,..., n.

2. Original Analysis: carry out the original TLM
analysis (3} and store the set of impulses for all
indices in the set L;, i=1, 2,..., n. The values of the
incident impulses in the observation domain are
also stored to determine the @djoint excitation.

3. Adjoint Analysis: carry out the backward adjoint
analysis (15) with the adjoint excitation determined
in step 2. Store the impulses of the links with
indices L;, i=1, 2,..., n

4.  Sensitivities Estimation:
parameters.

evaluate (14) for all

IV. EXAMPLES

We illustrate our AVM technique through estimating the
sensitivities for an inductive obstacle in the parallel plate
waveguide shown in Fig. 2. The width of the waveguide is
a = 6,0 cm, The length of the waveguide isd =6.2cm, A
square cell of dimension A/ =0.002 m is utilized. This
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Fig. 1. Ilustration of the links siorage; ay the arrowed links
are the ones for which the matrix A4 has nonzero components
for a perturbation of 1Ax of the parameter L, b) the arrowed links
are the ones that should be stored during the adjoint analysis of
the perturbed circuit and ¢) the links in (b) are approximated by
their corresponding ones for the unperturbed circuit.

problem is simulated as a 2D problem with a Gaussian-
modulated sinusoidal excitation of frequency f= 2.0 GHz.
Symmetry is employed to simulate only half of the
structure. The objective function is taken as

Tm
({ gey dxdr (16)

Al
where € is the cross section of the waveguide at the last
column of nedes and e, is the y component of the electric
field which is a function of the incident impulses. The
objective function (16) is approximated by

Fx,v)=———

N¢ Nx
Flx,v )= AIZZIeM(l N2 ) (17
where N, is the number of cells in the x direction and N, is
the number of time steps.

The gradient of this ‘objective function is estimated
using our AVM approach for different sets of parameters’
values. The comparison between the AVM results and the
central difference derivatives is shown in Fig. 3. We see
that the error introduced by utilizing the approximarion
(15y is acceptable for optimization purposes.
Incorporating a finer grid {A/ = 1.0 mm) results in a
reduced error in the AVM gradients as shown in Fig. 4
because the approximation (15) becomes more valid for a
finer grid.
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Fig. 2. The inductive obstacle example.
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Fig. 3. Objective sensitivities for the inductive obstacle
example at I = 3A/ with Al = 2.0 mm for different values of W
OF /oW obtained using AVM (—), dF/cW obtained using
ceniral differences (0), 0F/dD obtained using AVM (--) and
OF /D obtained using central differences (¥).
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Fig. 4. Objective -sensitivities for the inductive obstacle

example at D = 6A! with A7 = 1.0 mm for different values of W;
OF/dW obrained using AVM (—), oF/céW obtained using
central differences (0), 0F /oD obtained using AVM (--) and
oF D) obtained using central differences (¥).

V. CONCLUSIONS

For the first time, an adjoint variable approach is
presented for efficient sensitivities estimation in the TLM
method. An adjoint TLM simulation that runs backward
in time is set up using the original siructure. Using only
these two simulations, the derivatives of the objective
function with respect to all designable parameters are
estimated. The proposed technique features simplicity and
excellent accuracy. Its implementation with existing TLM
algorithims is straight-forward. OQur approach is illustrated
through a waveguide discontinuity example.
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